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ABSTRACT 

Among  all the  homogeneous R iemann ian  graded  metr ics  on the  a lgebra  

of differential forms, those for which the exterior derivative is a Killing 
graded vector field are characterized. It is shown that all of them are odd, 
and are naturally associated to an underlying smooth Riemannian metric. 
It is also shown that all of them are Ricci-flat in the graded sense, and 
have a graded Laplacian operator that annihilates the whole algebra of 
differential forms. 

1. Introduct ion  

G r a d e d  mani fo ld  theory,  as developed for example  in [4], provides  a n a t u r a l  

f ramework  to address  some geometr ica l  quest ions  t h a t  arose from the  s t u d y  of 

the  de R h a m  complex  of differential  forms on a s m o o t h  mani fo ld  M .  If  M is 

an n -d imens iona l  smoo th  manifold,  and  ~t(M) is i ts cor responding  Z2-graded-  

c o m m u t a t i v e  ]~-algebra of differential  forms, the  pa i r  (M,  ~ ( M ) )  is an  (n, n)-  

d imens iona l  Z2-graded  mani fo ld  (g raded  manifold for short ) .  Abs t r ac t ly ,  g raded  
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manifold theory treats the pair (M, gt(M)) as a ringed space; the ring Ft(M) is 

then the ring of Z2-graded (or super) functions on (M, ~t(M)). This enlarges the 

ring C~(M) of smooth functions, as gt(M) D ~~ = C~ Furthermore, ~ 

by definition, the canonical projection of ~(M) onto the ring of residues modulo 

the ideal of nilpotents gives a canonical embedding (M, C~ "--* (M, ~(M)).  

Now, vector fields on (M, Vt(M)) are identified with the (Z2-) graded 

derivations of ~(M). For example, the ordinary exterior derivative d is such 

a derivation. When d is regarded as a vector field, it makes sense to ask when 

is it a Killing vector field for a given Z2-graded metric on (M, ~(M)).  A (Z2-) 

graded metric on (M, ~(M))  is an fl(M)-bilinear pairing, 

(., .): Der a (M)  • Dera (M)  -~ a (M)  

satisfying appropriate conditions (cf. w below). The purpose of this work is to 

determine all those graded metrics such that, with respect to the usual Z-gradings 

on Der gt(M), and ~(M), the pairing (., .) is homogeneous of Z-degree +1, and 

with respect to the Z2-gradings d is an infinitesimal superisometry for it; i.e., 

([d, D1], D2) + (--1)IDol(D1, [d, D2]) = d(D1, D2) 

for all Z2-graded derivations D1, and D2 of ~(M), IDll being the Z2-degree of 

homogeneity of D1. 

Now, we have shown in Proposition 3.2 below that there are no even graded 

metrics having the exterior derivative as a Killing graded vector field. Neverthe- 

less, we have found a wide class of graded metrics for which the" conditions above 

are satisfied; namely, the class of odd graded metrics defined by a Riemann- 

ian metric on the base manifold M by means of a canonical construction (cf. 

Proposition 3.3 below). This constitutes then the supersymmetric counterpart 

of a structure previously studied by Koszul (see [5]). There, the question was 

posed as to what graded Poisson brackets can be defined on the graded algebra 

of differential forms. It has been shown (see also [2]) that odd graded Poisson 

brackets of Z-degree +1 associated to classical Poisson brackets are completely 

characterized by the property that d is a Poisson derivation. 

Having determined a class of metrics by such a (Z2-graded) geometrical prop- 

erty, we then compute some graded-Riemannian geometrical objects associated 

to the members of this class. In w and w below we show that all metrics of 
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this kind are Ricci fiat in the graded sense, and that their corresponding graded 

Laplacian operators vanish identically on the ring of super functions; i.e., any 

differential form becomes harmonic. We remark that these geometrical objects 

are computed with respect to the graded Levi-Civita connection. We have in- 

cluded a proof of its existence and uniqueness for a given graded metric (cf. 4.2 

below). Our proof is intrinsic; it does not depend on local coordinates, nor on the 

fact that the graded metric is homogeneous. We also remark that the concept 

of graded connection we deal with is categorical for graded manifolds in general; 

it is different from the notion of superconnection introduced in [7]. The latter 

was meant as an odd derivation in f~(M; TM)-- the f/(M)-module of differential 

forms with coefficients in the tangent bundle T M  (see [7] for details). 

2. Graded  metr ics  

Let M be a smooth manifold of dimension n, and let Y~(M) = (~=0  f~k(M) be 

its algebra of differential forms. This is a Z-graded algebra, which becomes a 

Z2-graded algebra by considering the original grading mod 2. Graded manifold 

theory centers its attention in the latter, but we shall refer ourselves to both 

gradings. We shall adopt the convention that ifv is an element of this or any other 

graded algebra or module, and the notation iv[ is used, we are tacitly assuming 

that v is homogeneous with respect to the Z2-grading. On the other hand, we 

shall occassionally need to refer ourselves to the Z-degree of homogeneity of an 

element, in which case we shall explicitly emphasize the meaning of the notation 

Ivl. 
Let Der ft(M) be the left graded ft(M)-module of all derivations on ft(M). 

Der ~(M) is a graded Lie algebra with the usual graded commutator (see [3] and 

[4]). It can also be regarded as a right graded ~2(M)-module with multiplication 

D a  = (--1)I'~IIDlaD. Actually, the assignment U ~-* Der f~(U), for each open sub- 

set U C M, defines a locally free ~2(M)-module of graded rank (n, n) with which 

the graded vector fields on the graded manifold (M, f/(M)) are identified (cf. 

[41). 
Let Hom(Der Yt(M), Yt(M)) be the right graded ft(M)-module of ft(M)-linear 

graded homomorphisms from the derivations Der ft(M) into the superfunctions 

~(M). This is the module of" graded differential 1-forms on (M, ft(M)). The ac- 

tion of a graded differential 1-form A on a derivation D will be denoted by (D; A), 

and for a �9 ~(M), Aa is the homomorphism defined by (D; Aa) = (D; A)a. It 
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can also be regarded as a left graded ~(M)-module with multiplication aA = 

Definition 2.1: A graded metric on the algebra of differential forms is a graded 

symmetric, non-degenerate, bilinear map 

G: Der~(M)  • Derf~(M) --* ~(M),  

(D1, D2) --* (D1, D2; G). 

That is, a map satisfying the following conditions: 

(1) (DI, D2; G) = (--1)[Dl[[D2[(D2, D1; G), 

(2) (aD1,D2;G) = a(DI,D2;G) = (-1)ID, II"IiDI,aD2;G), a �9 ~(M),  

(3) The linear map D ~ (D, .; G) is an isomorphism between the fl(M)- 

modules Der ~2(M) and Hom(Der E/(M), E/(M)). 

A graded metric is homogeneous of degree k �9 Z if [(D1, D2; G)[ = [DI[+[D2[ +k. 

h graded metric is even (resp. odd) if [(D1,D2;G)[ = [DI[ q-[D2[ (mod 2) 

(resp., ](D1,D2;G)[ = [nl[ + [n2[ + 1 (mod 2)). 

Let U be an open coordinate neighborhood in M and let {X1 , . . . ,Xn}  be 

a local frame of vector fields in U. It is easy to check that  { s  ,s  

ix~, . . .  , ix~} is a local frame for Der~2(U) (cf. [3]). Thus, a graded metric 

is completely determined by its action on the pairs of derivations (E.x,Ly), 

(Lx,  iF), and (ix, iy) where X and Y are vector fields on M. 

3. G r a d e d  me t r i c s  hav ing  t h e  ex te r io r  der iva t ive  as a Kil l ing g r a d e d  

vec to r  field 

Definition 3.1: A derivation D E Der~'/(M) is a Kil l ing g r a d e d  v e c t o r  field 

for a graded metric G if 

D(D1, D2; G) = ([D, D1], D2; G) + (--1)IDIIDII(Di, [D, D2]; G), 

for all D1, D2 E Der ~2(M). 

We shall now determine a class of matrics having the exterior derivative as a 

Killing graded vector field. We first turn our attention to even graded metrics: 

PROPOSITION 3.2: There are no even graded metrics having the exterior deriv- 

ative as a Killing graded vector field. 

Proofi Let G be an even metric. Let lr(o): ~2(M) -* ~2~ = C~176 be the 

projection map that  assigns to each differential form, its component of Z-degree 
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0. We may define a Riemannian metric g by g(X,  Y)  = r (o) ( (s  f~y; G)), for 

any pair (X, Y) of vector fields on M. 

Now, suppose the exterior derivative d is a Killing graded vector field for G. 

Then, 3.1 applied to the pair ( s  says that  d((Z:x, Z:y; G)) = 0. Therefore, 

d(g(X, Y)) = d(Tr(o)((s s  G))) = 0; in other words, g(X,  Y )  is a constant 

function for any pair of vector fields (X, Y). Whence g = 0, in contradiction to 

the fact that g is a Riemannian metric. | 

Thus, if such graded metrics actually exist in homogeneous form, they must 

be odd. The next result shows that  there is a t  least a good supply of examples 

coming from ordinary Riemannian manifolds: 

PROPOSITION 3.3: There is a one-to-one correspondence between Riemannian 

metrics on M and graded metrics on f~(M) of Z-degree +1 having d as a Killing 

graded vector tield. Speci~cally, given a Riemannian metric g on M its corre- 

sponding graded metric G is given by 

(L:x, L:y; G) = d(g(X, Y)), 

<s iF; G> = <ix, s  G) = g( X,  Y) ,  

( ix ,  iy; G) = O. 

Proof." Let g be a Riemannian metric on M and let G be the odd graded metric 

defined as in the statement. An easy computation on pairs of derivations of the 

kind s  and iy shows that the exterior derivative is a Killing graded vector field 

for G. 

Conversely, let G be an odd metric of Z-degree +1 for which d is Killing. Let 

X and Y be vector fields on M. Note first that the action of G on the pair of 

derivations of degree -1 ,  ( ix ,  iF), must be a differential form of degree -1 ,  so 

( i x , i y ;  G) = O. Now, define g �9 F(T*M | T ' M )  by g(X,  Y )  = (~x , iY ;  G). It 

follows, from (2) of 2.1, that g is tensorial. Furthermore, 

(f~x , iy; G) - (Ly  , ix; G) = ([d, ix], iy; G) - ( ix ,  [d, iy]; G) = d ( ix ,  iy; G) = 0 

where the hypothesis of d being Killing has been used. Whence, g is a sym- 

metric tensor field. Note that  the non-degeneracy of G implies that  g is also 

non-degenerate; thus, g is a Riemannian metric. Then, 3.1 easily implies that  

d(g(X, Y)) = (/:x, s G). | 
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Definition 3.4: Let g be a Riemannian metric on M. We define the odd graded 

metric, Gg, associated to g by the formulae given in the statement of the previous 

proposition. 

Remark: As is well known from classical (i.e., non-graded) Riemannian Geom- 

etry, the integral flow of a Killing vector field is a one-parameter subgroup of 

isometries. This is also true in the graded case, but one must take good care 

of the meaning of the integral curve associated to the odd vector field d. We 

refer the reader to [6] for a discussion on integral flows of graded vector fields in 

general, and for the explicit expression of the integral flow of the odd field d in 

the graded manifold (M, ~(M)) (cf. example 3.7 therein). 

4. R i e m m a n i a n  e lements  associated to a graded metric 

The first step towards the definition of the Riemannian elements associated to a 

graded metric is the concept of graded connection. 

Definition 4.1: A graded connection on ~(M) is a mapping, 

V: Der~2(M) x Der~2(M) ~ Der~(M),  

(01,02) ~ (Vl, 02; V) 

satisfying the following conditions: 

(1) (D1, D2 Jr D3; V) = (D1, D2; ~)  q- (D1,03; V), 

(2) (O1 + 02, 03; V) = (D1,03; V) + (02, D3; V), 

(3) (aD1, D~; V) = a(01, D~; V), 
(4) (D1, aD2; V) = Dl(a)D2 + (-1)IDIlI"Ia(D1, 02; V). 

A Z2-graded connection in fl(M) is homogeneous of degree IVI if, for any pair 

(D1, D2) of homogeneous derivations, (D1, D2; V) is homogeneous, and 

[(D1, 02; ~)[ = [DI[ + [D2[ + [~[, in Z 2. 

Remark: We have made a change with respect to the usual notation in order to 

avoid a proliferation of signs and other complications appearing because of the 

grading of the algebra, and the linearity properties on homogeneous elements. 

Such complications, however, do not appear when the connection is even and in 

that case we will switch back to the usual notation, VD1 D2 -- (D1, D2; V). 

The torsion,  T, of a graded connection is defined by 

(D1,02; T) = (O1, 02; V) - (--1)10111021(02, O1; V) - [O1, 02]. 
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Let G be a graded metric on ~(M), and V a graded connection. Write V = 
~0+ ~1 for the decomposition of the graded connection into its Z2-homogeneous 

components. Then, V is metric if 

D((D1, D2; G)) ={(D, D1; ~), D2; G> 

+(_I)IDIIIOl (D1, (D, D2; ~0); G) + (-1) IDII(IDI+I)(D1, (D, D2; ~1); G) 

for all homogeneous derivations D, D1, and D2. 
As in the classical case, any graded metric has an associated Levi-Civita 

connection. 

THEOREM 4.2: Given a graded metric, there is a unique torsionless and metric 
graded connection. 

Proof." Such a connection is given by the formula, 

2((D1, D2; ~), D3; G) : DI(D2, D3; G) - (-1)ID31(ID~I+ID2I)D3(DI, D2; G> 

+ (--1)IDII(ID~I+ID3I)D2(D3, D1; G> + ([D1, D2], D3; G) 

- (--1)]D'I{ID21+IDa[)<[D2, D3], D1; G> + (--1)LD3I(IDII+ID2I)([D3, D1], D2; G>. 

Indeed, if V is a graded metric connection, then 

DI(D2, D3) = ((D1, V2; V), D3> 

-}- (--1) IDIlID2] (D2, (D1, D3; 9~ -t- (--1)(IDxI+I)ID2I<D2, (D1, D3; ~1)>, 

where ~0 and ~1 are, respectively, the even and odd parts of V as above, and we 

have omitted the explicit reference to the metric G in order to keep the notation 

simpler. Now, the "cyclic sum" 

DI(D2, D3) + (--1)IDII(ID2I+JDal) D2(D3, DI> - (--1)ID31(IDlJ+ID21) D3<D1, D2> 

is equal to 

((Vl, D2;V) + (--1) ID'IID21 ((D2, D1;9~ (D2, D1;~I)), Dz> 

+(--1)ID2IID3I<((D1, D3;V ~ + (D1, D3;~l))-  (--1)IDllJDzI(D3, D1;~), D2> 

+(--1)ID~I(ID2I+ID3J)((D2, D3;V)- ( -1)  ID21fD31 ((D3, D2;V~ (D3, D2;V1)), DI> 

and using now the fact that V is a torsionless connection, this simplifies to 

2((D1, D2; ~), D3) - ([D1, D2], D3> + (-1) ID2IID31 ([DI, D3], D2> 

+ (--1)ID~I(ID=I+ID31)([D2, D3], DI> 
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from which the formula for (and consequentlly, the uniqueness of) the graded 

linear connection is established. It is now a matter of simple computation to 

prove that this connection is metric and torsionless. | 

Remark: The formula we have derived for the graded Levi-Civita connection co- 

incides with that obtained in [1] for even metrics on an arbitrary super- 

manifold. Also, an expression in local coordinates can be found in [8]. Our 

proof does not depend on local coordinates, nor on the fact that the graded 

metric is homogeneous. 

Remark: Note that the graded Levi-Civita connection for a homogeneous graded 

metric (i.e., odd or even) is always even. From now on we shall work exclusively 

with homogeneous graded metrics and we shall use the classical notation for the 

corresponding Levi-Civita connection; namely, (D1, D2; V) = VDa 02. 

Now, the graded curva ture  tensor  of V is defined by 

RG(D1, D2)D3 = [VD1, ~D2]D3 -- V[D1,D2]D3 �9 

The graded Ricci tensor  is the graded symmetric bilinear mapping defined by 

SG(D1, D2) -- sTr(D ~-~ RG(D1, D)D2), 

where sTr denotes the supertrace of the given endomorphism. 

The supertrace of any endomorphism H of Der ~(M) can be computed with 

the aid of the odd graded metric G 9 in the following manner. Let {Xk}~=l be an 

orthonormal frame for g. Then, {s ixk }'~=1 is a basis of graded derivations 

that satisfies the following relations, 

(s163 = 0 = (ix~,ixt;Gg), (s = 6ke = (ix~,s 

and therefore 

n 

sTr(H) = Z < H ( s  ixk ;Gg> - <H(ixk), s ; Gg>. 
k=l  

THEOREM 4.3: The graded metric Gg is Ricci fiat. 

Proof The Levi-Civita connection associated to Gg is given by 

V L x V Y  = s  VLxiY = ivxY,  V~xs = ivxY,  V~xiY = O, 
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where V and R g are the Levi-Civita connection and the curvature tensor of g. 

Now the graded curvature tensor of Gg is given by 

R ( s 1 6 3 1 6 3  : f~Ra(X,Y)Z, 

R ( s  s  = iRg(X,y)z, R(f-.x, iy)f-.z = iRg(x,y)z, 

R ( g x , i v ) i z  = O, R ( i x , i v )  = O. 

Using the above formula for the supertrace it is easy to verify that the Ricci 

tensor vanishes. | 

5. Gradient ,  divergence, and Laplacian opera tors  for G 9 

Definition 5.1: Let G be a graded metric. Define the graded musical isomor- 

phisms with respect to G by 

and let 

~: Der ~(M) ~ Hom(Der 12(M), I2(M)), 

D ~ = ( , D ; G ) ,  

~: Hom(Der ~2(M), ~2(M)) ~ Der ~2(M) 

be the inverse of ~. 

The proof of the following lemma is a straightforward routine. 

LEMMA 5.2 :  For any D E Der~(M), A E Hom(Der~/(M),~(M)) and a E 

~ ( M ) ,  we have 

(1) IDOl = [D[ + ICl and I = IAI- ICl, 
(2) ( a D )  ~ = (--1)I~I(IDI+IGI)Dba. 

(3) = 

Definition 5.3: Let G be a graded metric and let a be a differential form on M. 

The graded gradient  of a is the unique graded vector field, Grad C a, such that 

(D, Grad a a; G) = D ( a ) ,  

for all D E Der ~(M). 

Again, the proof of the following 

verification from the definitions. 
lemma consists of a straightforward 
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LEMMA 5.4: Let G be a graded metric and let D be a Killing vector field for it. 

Then, for any a 6 f~(M), 

[D, GradG(a)] = GradG(Da). 

A Riemannian metric g on M defines an isomorphism g~: T*M ~ T M .  This 

isomorphism can be uniquely extended to a derivation of Z-degree - 1  (denoted 

by the same symbol), g~: ~ ( M )  ~ f~(M, T M ) ,  satisfying g~(f) = 0 for all f 6 

12~ 

Now, a well known result of [3] provides a unique decomposition of any deriva- 

tion into two terms: first, a derivation that commutes with the exterior deriva- 

tive, and second, an algebraic derivation. The application of this result to the 

derivation GradV a gives the following: 

PROPOSITION 5.5: Let g be a Riemannian metric on M,  and let G 9 be its 

associated odd graded metric. Then, for any a e f~(M), 

Grad a~ a =/:9~(~) + ig~(da). 

In particular, for any f 6 f~~ ~- C~176 

Grad Gg f = igradf, Grad Gg d f  =/ :grad/ ,  

where grad f is the gradient with respect to the Riemannian metric g on M.  

Proof: It is easy to check that  GradCg: f l(M) --* Derf l(M),  defined by 

Grad G9 (a) = ( -1)  I~l Grad G" (a), 

is a derivation of degree -1 .  This is a consequence of the following formula: 

Grad(aj3) = ( -1)  lal Grad G" (a)/~ + a Grad G" 03), 

where the right module structure of Der ~ (M)  is given by Dfi = (-1)IDIIZlfiD. 

Let us suppose that  Grad eg (a) = s  + i L . ,  where K~ 6 l)l~l-Z(M; T M )  and 

L~ 6 ~I~I(M; TM) ,  lal being the Z-degree of a. Then, by application of Lemma 

5.4, and having in mind that  d is a Killing vector field, it follows that  for any 

e a(M), 
L~ = Kd~. 
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Now, as a consequence of the fact that  Grad a9 is a derivation of degree -1 ,  

we have that  the operator/~:  f~(M) ~ 12(M; T M )  is also a derivation of degree 

-1 .  Thus, it is completely determined by its action on f/~ + d 12~ Let f 

be a smooth function. Then 

X ( f )  = (ix,  Grad a* (d f ) )  = g(X,  Kdf  ). 

Therefore Kdf ---- grad f ,  and 

Grad vg (d f )  = Egrad f .  

Moreover, 

0 = (ix ,  Grad a9 (f)) = g(X,  g f ) .  

Hence K f  = 0, and therefore Grad ag (f)  = /grad f. Finally, the der iva t ion/ f  is 

completely determined b y / ( f  = 0 a n d  /~df  ---- -g~(df) ,  which proves the result. 
| 

Let G be a graded metric. We shall now define the divergence operator acting 

on graded 1-forms. Let A be a graded 1-form, then VA can be considered as 

a map from Derf~(M) into Hom(Der~(M), f t (M)) .  Then (VA)~ is a map of 

Der f~(M) into itself, but it is not ft(M)-linear. In order to get an ~2(M)-linear 

morphism we have to introduce a sign. Let 

H~: Derl2(M) --~ Derf~(M) 

be the endomorphism defined by 

D ~ (D;H:~)=(-1)IDI(I)'I+Ial)(VDA) ~. 

Definition 5.6: The g r a d e d  d ive rgence  of A is defined by 

~a~ = -sTr(H~), 

where sTr denotes the supertrace. 

The graded divergence operator Div a : Der f l(M) --* 12(M) is then defined by 

Diva(D) = -6G(D~). 
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LEMMA 5.7: Let g be a Riemannian metric on M and let Gg be its associated 

odd metric. I f  {Xk}~=l is an orthonormal basis for g, then 

(~~ = ( - 1 )  IAI ~ Cx~ ((ix~ ;A) )  - ixk ((Cx~ ;A) ) .  
k = l  

Proo~ If {Xk}~= 1 is an orthonormal basis for g, then 

n 

sTr (HA) = E ( ( V L x k  A) ~, ixk ;Gg) - ( -1)  IAI ((Vix~ A) t, s ;Gg). 
k----1 

Interchanging the arguments and applying the definition of the ~ morphism we 

obtain 

sTr (HA) = (-1)  I~1E(ix~, (Vs A)t; Gg) - (s (Vixk A)~; Gg) 
k = l  

n 

= (_l)l l ;VLx  - <Cx  
k = l  

n 

= (-1)IM E f~xk (ix~ ; )t) - <VLx~ ix~ ; A) - ixk <~X~ ; )t) + <Vixk s ; )t) 
k = l  

= (--1)IAIs163 --ixk(s | 
k = l  

PROPOSITION 5.8: Let g be a Riemannian metric on M and let Gg be its asso- 

ciated odd metric. Then Div cg ( ix)  = 0 and Div Gg (s  = 0, for any vector field 

X o h M .  

Proo~ This is a consequence of the previous lemma. | 

For the graded manifold (M, ~(M)),  the ring of "functions" is the algebra 

of differential forms on M. Then, the definition of the graded Laplacian on 

"functions" gives a classical (not graded) differential operator of order 2 on the 

algebra of differential forms. We now need to recall the definition of the graded  

exter ior  derivative: Given a E ~(M), the graded exterior derivative of a, 

dg~a E Hom(Der~(M),f l(M)),  is defined by (D;dg~a) = D(a) for any D E 

Der~(M) (cf. [4]). 

Definition 5.9: The graded  Laplaeian opera tor ,  A a, for the graded metric 

G, is the differential operator defined by A a a  = 5a(dS*a), for any a E fl(M). 

It is easy to check that ACa = -Diva(Grada(a) ) .  
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THEOREM 5.10: Let g be a Riemannian metric on M and let Gg be its associated 

odd metric. Then, A cg = O. 

Proot Let a be a differential form and let {Xk}'~=l be a g-orthonormal basis. 

Then, by Lemma 5.7, 

= ( - 1 )  I'~l ~ s ((ix~ ; dg~a)) - ixk ((s ; dg~a)) 
k--1 

= ( - 1 )  I~1 E s  - ixks 
k=l 

n 

m 
k----1 

A consequence of this fact is that ,  at least for the odd case under consideration, 

finiteness theorems about the dimension of the spaces of harmonic forms are no 

longer true. For these odd metrics, any differential form is harmonic. 
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